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Fractal strain distribution and its implications for cross-section balancing 
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Abstract--Rock units having different physical properties show contrasts in structural styles. Massive competent 
rocks have relatively simple geometry and control the structural framework, whereas thin-bedded, less 
competent units are characterized by complex deformation at smaller scales. These contrasting structural styles 
can be quantified by a fractal dimension D. A fold profile with a D close to 1 has a simple geometry. A value of 2 > 
D > 1 indicates a fractal profile. A fractal profile has a fractal strain distribution such that the measured 
shortening increases with resolution. For rock units having different values of D, the shortening strains measured 
with the same resolution cannot be compared because a significant amount of deformation takes place at smaller 
scales for these units with a larger D. Proper balancing requires high-resolution analysis for these units to resolve 
strain at smaller scales. 

In the central Appalachians, West Virginia, the Cacapon Mountain anticlinorium has a large ramp anticline in 
Cambrian-Ordovician rocks, which has a net shortening of 10.510 km as measured by section restoration. In 
contrast, restoration of the overlying complexly folded and faulted Upper Ordovician through Devonian units 
indicated a 3.660-km shortening. Thin section analysis revealed a 15-20% strain, equivalent to another 3-km 
shortening, and the remaining difference in shortening between the cover and the underlying blind thrust sheet 
has been previously attributed to forethrusting. Fractal analysis indicates that the Cambrian-Ordovician thrust 
sheet has a D = 1.001 and the cover fold profile has a D = 1.072, which indicates a fractal geometry. If thin section 
scale through outcrop scale to map scale strains are included in the cross-section balancing, the cover sequence 
has a comparable shortening to that in the underlying thrust sheet. 

INTRODUCTION 

DETERMINATION of the total shortening across a fold- 
thrust belt is important in order to quantify the defor- 
mation. However, estimates of shortening in different 
lithological units are often different, suggesting either 
the section cannot be balanced or that the method of 
estimation is inadequate. Problematic sections are likely 
where the geological data are not very reliable, as is 
generally the case for reconnaissance data covering a 
large area. However, detailed data from large-scale 
geologic maps covering small areas are relatively re- 
liable and problematic sections are less likely, depend- 
ing on the amount of subsurface geologic information 
available for section construction. In this paper, a large- 
scale geologic map and the accompanying section are 
used to illustrate a fractal strain distribution. The study 
indicates that a higher resolution structural analysis is 
necessary for rock units having a larger fractal dimen- 
sion in order to determine the total shortening and 
balance the section. 

The fractal nature of some geological features was 
described by geologists long before Mandelbrot (1967, 
1983) invented the fractal theory. For example, the 
familiar anticlinorium and synclinorium are fractal pat- 
terns (Fig. 1). In the field, the so-called 'S', 'Z', 'M' and 
'W' parasitic folds are observable from different parts of 
some outcrop-scale folds. In thin sections of low-grade 
schist, crenulations are common. Even within individual 
grains of some common rock minerals, kink bands, 
undulatory extinction and twins indicate distortion and 
bending of the crystal lattice. This scaling property of the 
entire series of deformation features ranging from tens 

of kilometers to microns in scale indicates a fractal 
geometry. For profile b in Fig. 1, part of the anticlinor- 
ium or synclinorium can be enlarged by a certain factor 
to resemble the whole profile. Profile c in Fig. 1 also has 
this scaling property, except that the magnification fac- 
tor in the vertical direction should be different from that 
in the horizontal direction. In fractal terminology, it can 
be stated that the Hausdorff-Besicovitch dimensions D 
(Mandelbrot 1983) of the profiles b and c in Fig. 1 are 
larger than their topological dimensions (such that a 
simplistic profile has a topological dimension of 1). 
Recognition of this fractal geometry is very important to 
structural geologists, because D indicates a fractal strain 
distribution and quantifies how the estimated shortening 
increases with the resolution of structural analysis. 

To illustrate this scaling property of total shortening 
of folded rocks, the Cacapon Mountain anticlinorium 
(Fig. 2) in the central Appalachian Valley and Ridge 
province was selected as a field example because abun- 
dant geological and geophysical data and reliable cross- 
sections are available (Geiser 1974, Jacobeen & Kanes 
1974, Perry 1978, Dean et  al. 1985, Kulander & Dean 
1986, Mitra 1986, 1987, Wilson & Shumaker 1988, 
Ferrill & Dunne 1989). Specifically, the cross-section 
(1:48,000) accompanying the large-scale (1:24,000) geo- 
logic map in the Cacapon Mountain area published by 
Dean et al. (1985) provides an excellent fold profile for 
Fourier and fractal analysis. The central Appalachian 
structural style varies in two different litho-tectonic 
packages (Fig. 3). In the Cambrian-Ordovician (CO) 
carbonates, ramps which connect a lower drcollement in 
the Lower Cambrian Waynesboro Formation and an 
upper drcollement in the Upper Ordovician Martins- 
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Fig. 1. Simple fold profile and fractal fold profiles. The anticlinorium and synclinorium are formed by superimposing 
smaller scale folds. Profile b is a self-similar fractal since folds at each level have a constant amplitude to wavelength (a/w) 
ratio. Profile c is a self-affine fractal in which the a/w ratio of folds at each smaller scale is doubled (smaller folds can also 

have reduced a/w ratio). 

burg Formation have produced large-scale ramp anti- 
clines or blind duplexes (Jacobeen & Kanes 1974, Perry 
1978, Dean et al. 1985, Kulander & Dean 1986, Mitra 
1986, 1987, Geiser 1988, Wilson & Shumaker 1988, 
Ferrill & Dunne 1989). The overlying Upper Ordovi- 
cian, through Mississippian, predominantly clastic se- 
quences, on the other hand, are complexly folded with 
abundant small-scale thrust faults. This is nicely illus- 
trated by the Cacapon Mountain anticlinorium (Fig. 4), 
where folds of various wavelengths with small thrust 
faults in the Upper Ordovician, Silurian, and Devonian 
sequence overlie a large blind ramp anticline in the 
Cambrian-Ordovician carbonates. 

Although the available geologic data are detailed and 
reliable, a problem occurs when one tries a bed-length 
restoration of such a ramp anticline and the overlying 
folded cover sequence (Ferrill & Dunne 1989). In order 
to determine the shortening across the Cacapon Moun- 
tain anticlinorium, the cross-section has been digitized 
and restored (Fig. 5) using GEOSEC TM, a proprietary 
software from CogniSeis Development for cross-section 
construction, modeling, restoration and balancing. In 
the deformed state section (Fig. 4) the western reference 
line (west boundary of Fig. 4) is near the hinge of 
Sideling Hill syncline. The eastern reference (or loose 
line of Geiser 1988) is in the hinge of the Timber Ridge 
syncline above the Martinsburg drcollement and on the 
E-dipping backlimb of the Cacapon Mountain anticli- 
norium beneath the Martinsburg drcollement. The 
lower part of the reference line is nearly perpendicular 

to bedding in the deformed state and restored to vertical 
in the restored state, indicating that there is a slight 
backward shear in the Cambrian-Ordovician carbonate 
units of the blind ramp anticline. Above the Martinsburg 
drcollement, the reference line is currently inclined 
toward the west and restores to vertical in the unde- 
formed state. This is a reasonable geometry which 
indicates a forward shear in the transport direction 
during deformation. 

It is interesting to note that there is only about a 1.2 km 
shortening discrepancy between the Ordovician Oswego 
and Martinsburg Formations (Oo and Om in Figs. 4 and 
5) and the Cambrian-Ordovician carbonates. This 
shortening discrepancy can be easily explained by a 
strain in the Oswego and Martinsburg Formations that is 
larger than that in the Cambrian-Ordovician carbon- 
ates. However, there is 7.43-km shortening discrepancy 
between the Silurian and Devonian units and the 
Cambrian-Ordovician carbonates (Fig. 5). Ferrill & 
Dunne (1989) determined that layer-parallel shortening 
caused by pressure solution in the cover sequence is 
about 15-20%. This gives 3.0-3.5 km net shortening. 
Assuming small-scale strain is zero (this may not be true 
as will be discussed later), there remains a 3.5-4.0 km 
difference in shortening between the cover and the 
underlying blind thrust sheet. Ferrill & Dunne (1989) 
attributed this difference in shortening to forethrusting, 
because no evidence suggests backthrusting. However, 
if all major blind thrust sheets in the Valley and Ridge 
province have forethrusting of several kilometers, the 
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accumulated shortening in the Appalachian plateau 
(where folds are superficial above an Ordovician and 
Silurian detachment; Rogers 1963, Gwinn 1964) will 
exceed tens or even hundreds of kilometers. This short- 
ening, however, is not evident in the Appalachian pla- 
teau (Geiser 1988). Including small-scale strain data 
from thin section analysis is important in cross-section 
balancing (Woodward et al. 1986, Geiser 1988), but it is 
not enough if the total shortening has a fractal distri- 
bution because thin-section strain only measures the 
strain at millimeter to centimeter scale. Significant 
amounts of shortening may also exist between centi- 
meter and map scale. 

FRACTALS AND FRACTAL GEOMETRY OF 
FOLDED ROCKS 

A fractal profile is defined by Mandelbrot (1983) as a 
curve with a Hausdorff-Besicovitch dimension (D) 
greater than its topological dimension. A topological 
dimension is an integer such that a discrete point has a 
topological dimension of zero, a curve of 1, and so on. A 
fractal dimension of a profile describes how much of the 
two-dimensional plane it fills. If a profile is a simple 
curve without small-scale structures (such as the first 
profile in Fig. 1), its fractal dimension D = 1. If a curve is 
so complicated that it fills the entire plane, it has a fractal 

dimension D = 2. Thus, a ffactal profile has a fractal 
dimension 1 < D < 2 (such as the profiles b and c in 
Fig. 1). 

There are two basic types of ffactals: one is self- 
similar, the other is self-affine (Mandelbrot 1983, 1985), 
and both are statistically defined (Power & Tullis 1991). 
A self-similar fractal has a universal self-similarity which 
does not change with scale. When part of a self-similar 
fractal profile is magnified isotropically, it appears stat- 
istically the same as the entire profile. Profile b in Fig. 1 
is a self-similar fractal, because folds in all scales were 
generated to have a constant amplitude-to-wavelength 
ratio. In a self-affine fractal profile, however, variable 
magnification factors have to be applied to an enlarged 
portion in order to resemble the entire profile (such as c 
in Fig. 1). An important aspect of a self-affine ffactal is 
that the self similarity is not universal and changes with 
scale (Mandelbrot 1985). In a two-dimensional Eucli- 
dean plane, a self-similar profile can be treated as a 
special case of self-affine fractal. Hence a self-affine 
model is more general and appears to be more appropri- 
ate for describing the geometry of folded rocks. 

Examination of the cross-section in Fig. 4 reveals an 
interesting structural geometry. The ramp anticline in 
the blind Cambrian-Ordovician carbonate thrust sheet 
has a very simple fold profile. It has no small-scale 
structures, at least at the map resolution (1 mm in the 
original section represents 48 m). On the other hand, the 
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Fig. 2. Geologic map of Cacapon Mountain area. Geology is based on the geologic map of West Virginia (1:250,000; 
Cardwell et al. 1968) and the geologic map of the Capon Springs, Mountain Falls, Wardensville, Woodstock and Yellow 

Springs quadrangles (1:24,000; Dean et al. 1985). 8tratigraphic abbreviations are explained in Fig. 3. 
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Fig. 3. Stratigraphic units in the Cacapon Mountain area, based on the geologic map of West Virginia (1: 250,000; Cardwell 
et  al. 1968) and the geologic map of the Capon Springs, Mountain Fails, Wardensville, Woodstock and Yellow Springs 

quadrangles (1:24,000; Dean et al. 1985). 

overlying cover units have very complicated fold pro- 
files. The anticlinorium and synclinorium have numer- 
ous superimposed small-scale folds. Ferrill (1987) has 
recognized five orders of folds in this area, with fold 
wavelengths ranging from 12 km to a few centimeters 
plus microfolds at the scale of tenths of millimeters in 
shale (Ferrill personal communication 1992). Such con- 
trasts in structural style have been successfully modeled 
in the laboratory by Liu & Dixon (1990) and Dixon & 
Tirrul (1991). This contrast in structural style reveals a 
significant difference in strain distribution. The total 
shortening of the Cambrian-Ordovician carbonates is 
well represented by the large-scale ramp anticline. In the 
overlying cover units, however, a significant amount of 
deformation is contributed by the smaller scale struc- 
tures. In terms of fractal theory, the Cambrian- 
Ordovician carbonates have a small fractal dimension, 
and the cover has a larger fractal dimension. 

For a fractal profile, the measured profile length is a 
function of the resolution of measurement. When the 
ruler length becomes smaller, resolution increases and 
the measured profile length becomes longer. Hence the 
measured total shortening across a fractal fold profile 
will increase with an increase of resolution of measure- 
ment. The fractal dimension D quantifies the changing 
rate of measured length with the ruler length, therefore 
D can be used to describe how much deformation exists 
at smaller scales. 

ESTIMATION OF FRACTAL DIMENSION 

There are many ways to define a fractal dimension 
(Mandelbrot 1983, 1985, Falconer 1990), such as com- 
pass dimension, box counting dimension, mass dimen- 
sion and spectral dimension. According to Mandelbrot 
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Fig. 5. Restored section across the Cacapon Mountain anticlinorium using GEOSEC TM, a proprietary software of 
CogniSeis Development,  Inc. for cross-section construction, modeling, restoration and balancing. 

(1985) the values yielded by these dimensions are ident- 
ical only for a self-similar fractal. Caution must be taken 
when applying these methods to self-affine fractals. Not 
only do they yield different values but some methods are 
invalid. The fractal dimension may only apply to a 
certain range, because there is no universal D applying 
to all scales for a self-affine fractal. The fractal dimen- 
sion of the Cacapon Mountain anticlinorium will be 
studied by a spectral method and a compass method. 
The limits of application of both methods are discussed 
and their results are compared. 

Spectral method 

Fourier analysis of a structural profile (which is called 
a spatial domain) provides the information about distri- 
bution of fold wavelength (or frequency, which is the 
reciprocal of wavelength) and amplitude in a wavelength 
(or frequency) domain (Wilson 1988). Fold amplitude 
and wavelength are directly related to the shortening of 
folded rocks. Their distribution is related to the strain 
distribution (the term strain used in this paper refers to 
the total shortening strain of a profile, which includes, 
but is not equal to, the internal strain). The Fourier 
transform can be used to estimate the power spectral 
density function G(k) (Chatfield 1984, Jenkins & Watts 
1968) which has the form 

a(k )  = Ck -a (1) 

(Brown 1987, Hough 1989, Power & Tullis 1991), where 
k is the wave number, C is a constant, and a is in the 
range of - 2  to -3 .  From the power spectral density 
function, the fractal dimension can be estimated by 

D = (5 - a)/2 (2) 

(Brown 1987, Hough 1989, Power & Tullis 1991). 
A discrete Fourier transform requires that the spatial 

function be single valued, i.e. for an x co-ordinate, there 
is only one corresponding y value. The base of the DS 
units in Fig. 4 was selected for a Fourier transform 
because it has representative cover unit structures and 
has limited faults and overturned folds. DS units (Fig. 3) 
contain the Devonian Helderberg Group (limestone), 
Silurian Tonoloway Limestone, Wills Creek Formation 

(shale and thin bedded limestone) and Bloomsburg 
Formation (claystone with shale and thin-bedded lime- 
stone). According to Dean (personal communication 
1992), the Bloomsburg Formation is intensely folded 
and cannot be shown on sufficiently small scale on the 
cross-section, and it is expected that fractal analysis can 
predict the missing amount of shortening. 

The base of DS was digitized at a 0.1 inch (2.54 mm) 
interval and the Fourier coefficients (A and B) were 
calculated by a FORTRAN program. From the Fourier 
coefficients the power spectral density function is esti- 
mated by 

G(k) = NRZ/4er (3) 

(Chatfield 1984, p. 135), where N is the sample size, R k is 
the amplitude of the kth harmonic given by R~, = A/~ + 
Bk z. 

The power spectral density function G(k) vs wave- 
number is plotted in Fig. 6 on a log-log scale. The slope 
of the best-fit line of the spectrum is 2.79. The spectrum 
of a self-similar fractal profile will have a slope of 2; a 
spectrum of a self-affine fractal profile will have a slope 
in the range 1 < a < 3, excluding 2 (Fox & Hayes 1985, 
Fox 1989). Apparently the fold geometry in the 
Silurian-Devonian rocks indicates a self-affine fractal. 
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Fig. 6. Power spectral density function of the profile of the base of the 
DS (combined Silurian Wills Creek Formation, Tonoloway Limestone 
and Devonian Helderberg Group) in Fig. 4. The regression relation is 
obtained from the log-log scaled data. From the slope of the regression 
line, a fractal dimension of the DS profile is estimated as D = 1.105. 
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From the slope of the regression line, the fractal dimen- 
sion is calculated as D = 1.105 by using equation (2). 
The fractal dimension of the Cambrian-Ordovician 
rocks in Fig. 4 cannot be estimated by the spectral 
method because the fold profile is not single valued. 

Compass method 

A compass method (Mandelbrot 1983) is more 
straightforward for determing the fractal dimension 
than the spectral method. By using a compass with a 
certain opening r (or a ruler of length r) measuring along 
a profile, the fold arc length (Lo) is measured. Lo(r) or 
the normalized arc length Lo(r)/L, where L is deformed 
length, tends to increase with increase of resolution (by 
reducing the ruler length r). Lo(r)/L is used because this 
ratio is the reciprocal of stretch (S). Plotted on a log-log 
graph, Lo(r)/L vs r will fall on a straight line statistically 
if the profile is a fractal. The relation between the fractal 
dimension D and Lo(r)/L is given by 

Lo(r)/L = Ar (l-D) (4) 

(Mandelbrot 1983, Okubo & Aki 1987, Power & Tullis 
1991, Turcotte 1991), where A is a constant. 

As discussed by Aviles et al. (1987), equation (4) 
implicitly requires that a compass begin and end at the 
specified end points. In practice, this is not possible, and 
the way of handling the remainder is very important. 
Three possibilities are discussed by Aviles et al. (1987). 
The first method is to take only those rulers that give a 
remainder less than a specified value or tolerance. The 
second method is to add the straight line distance be- 
tween the ruler and the end of curve to the total length. 
A third method is to round up the straight line remain- 
der. The tolerance method is used here as it has been 
proved by Aviles et al. (1987) to give the smallest scatter 
in a data set. 

Both the DS and Cambrian-Ordovician units in Fig. 4 
are measured by the compass method (Fig. 7). The 
fractal dimension of Cambrian-Ordovician rocks is very 
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Fig. 7. Plot of Lo/L vs r for both CO (Cambrian-Ordovician) and DS 
profiles in Fig. 4. The compass fractal dimensions are estimated to be 

D = 1.001 in CO and D = 1.043 in DS. 

close to 1 (D = 1.001). This seems to make sense, 
because the Cambrian-Ordovician rocks do not appear 
to have a fractal geometry, e.g. there is no self similarity 
between small scale and large scale (no scaling prop- 
erty). However the D of 1.043 in the DS units seems to 
be underestimated, because of the apparent scaling 
property and the fact that a fractal dimension of 1.105 
was obtained by the spectral method. 

For a self-affine fractal, a compass may not give the 
right estimation of D as discussed by Mandelbrot (1985). 
There is a cross-over length b (Wong et al. 1986, Brown 
1987, Power & TuUis 1991) such that if r >> b, the curve 
appears to be smooth (D is close to 1) and, if r << b, the 
curve appears to be fractal. To use a compass method to 
estimate D, the resolution must satisfy r << b. The cross- 
over length b is implicitly defined by 

cr = b ( r / b )  (2-D) (5 )  

(Brown 1987, Wong 1987), where a is the standard 
deviation. When r = b then ~r = b, which means that 
when a ruler with the cross-over length b is used, the 
standard deviation of the curve equals the value of b. 
The cross-over length b can be estimated from the power 
spectral density function by 

G(k) = (4 - 2D)b(2°-2)(k) -(5- 20) (6) 

(Brown 1987). 
From the power spectral function (Fig. 6), the cross- 

over length of the DS units in the profile (Fig. 4) is 
estimated to be b = 0.78 mm. The minimum ruler used is 
1 mm (Fig. 4), and therefore the value of the fractal 
dimension D in the DS units (Fig. 4) is underestimated. 

It is still possible to use the compass method for 
estimating the fractal dimension by introducing a verti- 
cal exaggeration (Mandelbrot 1985, Brown 1987). A 
vertical-exaggeration factor needs to be determined 
first. The maximum ruler length (opening of the com- 
pass) used in this study is 40 ram, to make r small enough 
in comparison with b, and let r < 0.lb. D = 1.105 (Fig. 
6). Equation (5) becomes 

O = r° '895b 0"105. (7) 

The standard deviation of the original profile is Oo = 
400.895 0.780105 = 26.45. To let r < 0.1b requires or = 
400.895 (10 × 40) 0"105 = 50.94; then the profile must be 
enlarged at least by a factor of 2 (as indicated by ar/Oo) in 
the vertical direction. To find the best vertical exagger- 
ation, the DS profile in Fig. 4 has been exaggerated 2, 5, 
10 and 20 times in the vertical direction. The results are 
shown in Fig. 8. Vertical exaggerations of × 5 and × 10 
resulted in similar D values (D = 1.070 and 1.074, 
respectively). A D of 1.072 (the average of the two 
values) is used as the compass fractal dimension for the 
DS fold profile. 

The compass D (1.072) after vertical exaggeration is 
still smaller than the spectral D (1.105). This may be an 
inherent difference between these two methods. It is not 
known at this time whether other techniques can be used 
to bring the two methods into closer agreement. 
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FRACTAL STRAIN DISTRIBUTION 

The ratio Lo(r)/L in Figs. 6-8 actually indicates a 
strain distribution. Lo/L is the reciprocal of stretch (S), 
and can be converted into strain by L/Lo-1 .  The short- 
ening strain is plotted at the right side of  Fig. 9 (log-log 
scale). Although the cross-section digitized in 
G E O S E C  T M  can be set to have a very high resolution 
(such as 0.5 m),  the real resolution is limited by the scale 
of the geological cross-section. Under  normal  circum- 
stances, we would not be able to recognize or draw 
structures less than about  1 mm.  For  the cross-section 
used here, 1 m m  represents 48 m in real scale. As 
indicated in Fig. 9, at this resolution the shortening is 
about  40% in the Cambr ian-Ordovic ian  rocks and 
about  15% in the DS units. 

As revealed by the fractal dimension D, however,  the 
strain shows a fractal distribution. The Cambr ian -  
Ordovician units have a small D which is almost equal to 
1. It means that not much deformation has occurred on 
smaller scales. With an increase in the resolution of 
structural detail through mesoscopic and microscopic 
strain analysis, there likely will not be significant addi- 
tional total shortening of the profile. On the other hand, 
the folded Upper  Ordovician through Devonian units 
overlying the Cambr ian-Ordovic ian  carbonate  rocks 
have a fractal dimension of 1.072 which means that a 
significant amount  of deformat ion has occurred at 
smaller scales. With an increase in the resolution of 
structural detail, significant new data may be revealed 
about  the total shortening of the fold profile. 

In Fig. 9, the compass fractal dimension D of both DS 
and the Cambr ian-Ordovic ian  units has been extrapo- 
lated toward finer scales. The intersection point r 1 (6.17 
)< 10 -7 m in map and about  0.030 m in real scale) 
represents the required resolution of structural analysis 
in order  to estimate the total shortening in the DS units 
in which a D = 1.043 is used. However ,  the compass D 
without t reatment  is underest imated for a self-affine 
fractal. The compass D with vertical exaggeration is also 
plotted in Fig. 9 using the cross-over length est imated 
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Fig. 8. Plot of LJL vs r for the DS profile after vertical exaggeration 
by factors of 2, 5, 10 and 20. The profiles vertically exaggerated x 5 and 
x 10 give similar results. An average fractal dimension is determined 

from these two results to be D = 1.072. 
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Fig. 9. Fractal strain distribution. The Lo/L ratios are converted into 
strain and indicated on the right. The fractal dimension of D = 1.001 in 
the Cambrian-Ordovician units and the fractal dimensions of D = 
1.043 (without vertical exaggeration treatment) and D = 1.072 (with 
vertical exaggeration treatment) in the Devonian-Silurian units are 
extrapolated toward the smaller scale. The range between the intersec- 
tion points r 1 and r 2 indicates a minimum required resolution for 
balancing the total shortening in DS with the shortening in CO (see 

text for details). 

f rom spectral analysis. The second intersection point r 2 
(11.6 × 10 -7 m in map and about 0.556 m in real scale) 
indicates the resolution of structural analysis required in 
order  to balance the shortening in the DS units by using a 
D = 1.072. Although the exact positions of the intersec- 
tion points depend on many uncertainties, such as the 
precision of the cross-section and a correct estimation of 
D, a structural analysis with a resolution ranging from 
cm to dm is required to determine the total shortening in 
the DS units (Fig. 9). As ment ioned previously, the 
Bloomsburg Format ion (at base of DS in Fig. 4) is more  
intensely folded than can be shown on the cross-section 
(Dean personal communicat ion 1992). The relatively 
simple structures illustrated on the cross-section do not 
accurately represent  the net shortening accommodated  
by folding and faulting. Both fractal analysis and field 
data suggest that structural analysis of higher resolution 
is necessary. 

Ferrill & Dunne (1989) determined the thin section 
strain in the Silurian through Devonian units to be 15- 
20% which gives about  3-3.5 km net shortening at this 
scale (mm).  However ,  strain is also distributed between 
the thin section scale (mm) and map scale (around 50 m 
in this case). At  least five orders of folds have been 
recognized in the Cacapon Mountain area (Geiser 1974, 
Dean et al. 1985, Ferril11987). The fifth-order folds have 
wavelengths ranging from a few centimeters to meters  
(Fig. 10), and the fourth-order  folds have wavelengths 
f rom a few meters  to tens of meters  (Geiser 1974, Dean 
et al. 1985, Ferrill 1987). Both fifth- and fourth-order  
folds are beyond the resolution of the cross-section at 
1:48,000 scale, but as predicted in Fig. 9, the shortening 
produced by structures in this scale range is estimated to 
be about  10% (Fig. 10). If  strains f rom the entire scale 
range are included in the section balancing, the cover 
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Fig. 10. Small-scale folds from Cacapon Mountain anticlinorium, 
Wills Creek Formation, with wavelength of centimeters to meters 
(Geiser personal communication 1992). These folds are not rep- 
resented in Fig. 4 because of map resolution and are not measured in 
thin-section scale strain analysis because of their size. Figure 9 predicts 

that shortening strain from folds like these is around 10%. 

sequence has a comparable shortening to that in the 
underlying blind thrust sheet. This conclusion does not 
imply that there is no displacement transfer by fore- 
thrusting; it implies that displacement transferred out is 
about the same as that transferred in from the internal 
direction (southeast). 

DISCUSSION 

Recognition of fractal strain distribution is important 
in structural analysis. When performing cross-section 
modeling and balancing, one must be aware of the map 
(or cross-section) resolution, since only those structures 
larger than the resolution limits are presented on the 
map. Massive competent rock units usually display 
broad folds and control the structural framework on a 
large scale. In fractal terminology, D is close to its 
topological dimension. In contrast, thin bedded, less 
competent units, are usually more highly deformed and 
have a much more complicated geometry. Greater struc- 
tural detail will be revealed at smaller scales as the 
resolution of observation is increased, and in this case, 
the fractal dimension D is larger than its topological 
dimension. For these rock units, not only does micro- 
scopic strain analysis become important, but outcrop 
scale observation (the scale between thin section and 
map scale) is also critical. 

Spectral analysis is useful in determining the fractal 
dimension but has a limited application to geological 
cross-sections. Many structural profiles have overturned 
folds, mushroom-shaped folds, thrust faults and/or nor- 
mal faults. In terms of mathematics, the fold profiles not 
only have many discontinuities, but they are also not 

single-valued. Another problem encountered here is 
that the spectral ffactal dimension is different from the 
compass ffactal dimension even after the profile has 
been vertically exaggerated. According to Brown 
(1987), for a self-affine ffactal adjusted by an appropri- 
ate exaggeration, the compass method should generate a 
value similar to the spectral method. Whether a special 
treatment of the raw spectrum is needed should be 
investigated further. 

The compass method is simple and straightforward 
and can basically be applied to any type of fold profile. 
Because of limitations when applied to self-affine ffac- 
tals, however, it must be used with caution since most, if 
not all, geologic problems are self-affine. An adjustment 
by exaggerating the vertical direction is necessary when 
the cross-over length is smaller than the largest ruler 
used. When the ruler is small, the accumulated error of 
compass walking becomes very sensitive. A physical 
problem also exists when a profile is enlarged tens or 
even hundreds of times in one direction, and a computer 
program (Brown 1987) is needed to perform the com- 
pass walking procedure. 

As pointed out by Mandelbrot (1985), a self-affine 
fractal does not have a global ffactal dimension. This is 
especially true here since geological structures are con- 
trolled by many factors. Tectonic processes, basement 
configuration, rock strength and formation thickness 
affect the large-scale structural geometry. Deformation 
mechanisms, rock composition, texture, grain size, 
strain rate, temperature, pressure and pore fluids affect 
the small-scale structural geometry. The scaling prop- 
erty apparently changes from one mountain belt to 
another, and from one province to another within a 
mountain belt. It is critical to characterize these ffactal 
domains and to find to what limit a ffactal dimension 
applies. 

The Cambrian-Ordovician rocks do not crop out in 
the Cacapon Mountain anticlinorium. Therefore, it is 
unknown exactly how much. small-scale and microscopic 
strain exists in this stratigraphic interval. The carbonate 
rocks do crop out about 18 km east of the Cacapon 
Mountain anticlinorium in the hanging wall of the North 
Mountain thrust fault and also at the southern terminus 
of the core of the Adams Run anticlinorium. Cloos 
(1971) determined the strain axial ratios from oolites in 
the Cambrian-Ordovician carbonates to be 1.28-1.68 
(12-22% layer-parallel shortening). This strain is mainly 
due to the large displacement of the underlying North 
Mountain thrust fault. Dean & Kulander (1972) have 
found that the deformed oolites in the Cambrian- 
Ordovician carbonates in the immediate vicinity of the 
North Mountain fault zone commonly have high strain 
ratios (R = 2.6). In the Cacapon Mountain area, the 
strain in the carbonates should be much smaller (Mitra 
1987, Ferrill & Dunne 1989) because the displacement 
of the Cambrian-Ordovician thrust sheet is much 
smaller (about 7.25 km) than the 60 km displacement on 
the North Mountain thrust fault (Kulander & Dean 
1986). In their laboratory models, Liu & Dixon (1990) 
and Dixon & Tirrul (1991) found that both competent 
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and incompetent units have experienced a significant 
amount of layer-parallel shortening strain in the early 
stages of deformation. A 5% layer-parallel shortening 
could be a reasonable estimation for the carbonates. If 
this is true in the Cacapon Mountain area, the fractal 
dimension of the Cambrian-Ordovician carbonates can- 
not be extrapolated to the finer scale (Fig. 8) because 
there may be a cross-over length which is very small and 
cannot be detected by the profile analysis. The general 
conclusion will not be affected by a few-percent micro- 
scopic strain in the carbonates. Because D in the massive 
carbonates is still much smaller than D in the cover units, 
the two lines (Fig. 9) will intersect. Structural analysis at 
the resolution indicated by the intersection point will 
reveal equivalent shortening in both the massive carbon- 
ates and the cover units. These arguments need to be 
tested by sampling from well cores, if available, or from 
the outcrops in the Adams Run anticlinorium. 

CONCLUSIONS 

Strain distribution has a scaling property which can be 
described appropriately by a fractal dimension D. A 
value of D close to one means that not much strain is 
accommodated by small-scale structures. If D is signifi- 
cantly larger than 1, it means that a significant amount of 
strain is accommodated by structures at smaller scales. 
When balancing a cross-section, one must consider 
shortenings at all scales for those units with D > 1. 

Most geological features of fractal geometry are self- 
affine. When a compass method is used to estimate the 
fractal dimension, one must make sure that the maxi- 
mum ruler used is much smaller than the cross-over 
length. A proper treatment by vertically exaggerating 
the profile is necessary when the cross-over length is 
small. 

A fractal strain distribution in the Cacapon Mountain 
anticlinorium argues that the shortening in the cover 
sequence is comparable with that in the underlying blind 
Cambrian-Ordovician carbonate thrust sheet when 
strains from thin section scale through outcrop scale to 
map scale are all included. 
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